Institut für Kognitionswissenschaft

Institute of Cognitive Science


Osnabrück University navigation and search


Main content

Top content

Journal Articles

ResearchGate
LinkedIn
Loop.Frontiers
GoogleScholar
Pubmed

 

2021

(108) Is Deep-Learning and Natural Language Processing Transcending the Financial Forecasting? Investigation Through Lens of News Analytic Process
F. Khalil, G. Pipa
Computational Economics

(107) A trajectories' guide to the state space - learning missing terms in bifurcating ecological systems.
R. Vortmeyer-Kley, P. Nieters,  G. Pipa
EGU General Assembly Conference Abstracts

(106) A minimal model of neural computation with dendritic plateau potentials.
J. Leugering, P. Nieters, G. Pipa
Prepint  https://doi.org/10.1101/690792

(105) Westdrive X LoopAR: An Open-Access Virtual Reality Project in Unity for Evaluating User Interaction Methods during Takeover Requests
F. Nezami,M.A. Wächter, N. Maleki, P. Spaniol, L. Kühne, A. Haas, J. Pingel, L. Tiemann, F. Nienhaus, L. Keller,  S. König, P. König, G Pipa
Preprint arXiv:2012.12041

(104) Fast Concept Mapping: The Emergence of Human Abilities in Artificial Neural Networks when Learning Embodied and Self-Supervised
V. Clay, P. König, G. Pipa, K.U. Kühnberger
Preprint arXiv: 2101.02153


(102) Real-Time Dialogue between Experimenters and Dreamers During REM Sleep
(103) Learning sparse and meaningful representations through embodiment
V. Clay, P. König, K.U. Kühnberger, G. Pipa 
Neuronal Networks 

K. Konkoly, A. Kristoffer, E. Chabani, A. Mironov, A. Mangiaruga, J. Gott, R. Mallett, B. Caughran, S. Witkowski, N. Whitmore, J. Berent, F. Weber, G. Pipa, B. Türker, J.B. Maranci, A. Sinin, V. Dorokhov, I. Arnulf, D. Oudiette, M. Dresler, K. Paller
Current Biology

2020

(101) From Interaction to Cooperation: a new approach for human-machine interaction research for closing the out-of-the-loop unfamiliarity
MA Wächter, F Nezami, N Maleki, P Spaniol, L Kühne, A Haas, J Pingel, L Tiemann, F Nienhaus, L Keller, S König, P König, G Pipa
Preprint doi.org/10.31234/osf.io/7jg3c

(100) WestDrive X LoopAR: An open-access virtual reality project in Unity for evaluating user interaction methods during TOR
FN Nezami, MA Wächter, N Maleki, P Spaniol, LM Kühne, A Haas, JM Pingel, L Tiemann,  F  Nienhaus, L Keller, S König, P König, G Pipa
Preprint arXiv:2012.12041

<form method="GET" action="https://arxiv.org/search"></form>

(99) Adaptive Blending Units: Trainable Activation Functions for Deep Neural Networks
L.R. Sütfeld, F.  Brieger, H. Finger, S .Füllhase,  G. Pipa
Intelligent Computing: Proceedings of the 2020 Computing Conference

(98) Predicting epileptic seizures using nonnegative matrix factorization
O. Stojanović, L. Kuhlmann, G. Pipa
PloS one

(97) Project Westdrive: Unity City With Self-Driving Cars and Pedestrians for Virtual Reality Studies
F.N. Nezami, M.A. Wächter, G. Pipa, P. König
Frontiers in ICT 

(96) Event-based pattern detection in active dendrites
J. Leugering, P. Nieters, G. Pipa
Preprint doi.org/10.1101/690792

2019 

(95) Bistable Perception in Conceptor Networks
F. Meyer zu Driehausen, R. Busche, J. Leugering, G. Pipa
Artificial Neural Networks and Machine Learning – ICANN 

(94) Combining Deep Learning and (Structural) Feature-Based Classification Methods for Copyright-Protected PDF Documents
R. Garita Figueiredo, K-U Kühnberger, G. Pipa, T. Thelen
Artificial Neural Networks and Machine Learning – ICANN 

(93)A Bayesian Monte Carlo approach for predicting the spread of infectious diseases. 
O. Stojanović, J. Leugering, G. Pipa, S. Ghozzi, A. Ullrich
PloS one

(92) Moral judgements on the actions of self-driving cars and human drivers in dilemma situations from different perspectives
N. Kallioinen,  M. Pershina, J.  Zeiser, F.N. Nezami, G. Pipa, A. Stephan, P. König
Frontiers in psychology

(91) How does the method change what we measure? Comparing virtual reality and text-based surveys for the assessment of moral decisions in traffic dilemmas 
L.R. Sütfeld, B.V. Ehinger,  P. König, G. Pipa
PloS one

(90) Human decisions in moral dilemmas are largely described by utilitarianism: Virtual car driving study provides guidelines for autonomous driving vehicles
A.K. Faulhaber, A. Dittmer, F. Blind, M.A. Wächter, S. Timm, L.R. Sütfeld, A. Stephan, G. Pipa, P. König
Science and engineering ethics

(89) Functional Properties of Circuits, Cellular Populations, and Areas
K.D. Harris, J.M. Groh, J. DiCarlo, P. Fries, M. Kaschube, G. Laurent, J.N. MacLean, D.A. McCormick, G. Pipa, J.H. Reynolds, A.B. Schwartz, T.J. Sejnowski, W. Singer, M. Vinck
The MIT Press

(88) DeepRain – Improved local-scale prediction of precipitation through deep learning,
M. Schultz, F. Kleinert, L. Leufen, J. Ahring, S. Theis, J. Keller, G. Pipa, J. Leugering, P. Nieters, P. Baumann, V. Merticariu, A. Hense, R. Glowienka-Hens
Geophysical Research Abstracts

2018

(87) The public perception of lucid dreaming and its research
K. Lüth, K. Appel, G. Pipa, M. Schredl
International Journal of Dream Research

(86) Adaptive Blending Units: Trainable Activation Functions for Deep Neural Networks,
L.R. Sütfeld, F. Brieger, H. Finger, S. Füllhase, G. Pipa
Preprint arXiv:1806.10064

(85) 2D: 4D and spatial abilities: From rats to humans
N. Müller, S. Campbell, M. Nonaka, T.M. Rost, G. Pipa, B.N. Konrad, A. Steiger, M. Czisch, G. Fernandez, M. Dresler, L. Genzel
Neurobiology of learning and memory

(84) Investigating consciousness in the sleep laboratory–an interdisciplinary perspective on lucid dreaming
K. Appel, G. Pipa, M. Dresler
Interdisciplinary Science Reviews

(83) A Unifying Framework of Synaptic and Intrinsic Plasticity in Neural Populations
J. Leugering, G. Pipa
Neural computation

(82) Autonomous Vehicles Require Socio-Political Acceptance—An Empirical and Philosophical Perspective on the Problem of Moral Decision Making
L.T Bergmann, L. Schlicht, C. Meixner, P. König, G. Pipa, S. Boshammer, A. Stephan
Frontiers in behavioral neuroscience

(81) Response: Commentary: Using Virtual Reality to Assess Ethical Decisions in Road Traffic Scenarios: Applicability of Value-of-Life-Based Models and Influences of Time Pressure
L.R. Sütfeld, R. Gast, P. König, G. Pipa
Frontiers in behavioral neuroscience

2017

(80) Classifying Bio-Inspired Model of Point-Light Human Motion Using Echo State Networks  Artificial Neural Networks and Machine Learning – ICANN 2017, pp.84-91, P. Tanisaro, C. Lehman, L. Sütfeld, G. Pipa, Heidemann 
International Conference on Artificial Neural Networks ICANN

(79) Cortical Spike Synchrony as a Measure of Input Familiarity
C. Korndörferr, E. Ullner, J. García, G. Pipa
Neural Computation

(78) Neuromorphic computation in multi-delay coupled models
P. Nieters, J. Leugering, G. Pipa
IBM Journal of Research and Development 

(77) Using virtual reality to assess ethical decisions in road traffic scenarios: applicability of value-of-life-based models and influences of time pressure
LR Sütfeld, R Gast, P König, G Pipa
Frontiers in behavioral neuroscience 

(76) No effect of α‑GPC on lucid dream induction or dream content
S. Kern, K. Appel, M. Schredl, G. Pipa
Somnologie

(75) Encoding And Decoding Dynamic Sensory Signals With Recurrent Neural Networks: An Application Of Conceptors To Birdsongs
R. Gast, P. Faion, K. Standvoss, A. Suckro, B. Lewis, G. Pipa
bioRxiv, 131052

 

2016

(74) Persistent Memory in Single Node Delay-Coupled Reservoir Computing
A.D. Kovac, M. Koall, G. Pipa, H. Toutounji
PloS one 

(73) Applicability of echo state networks to classify EEG data from a movement task
L. Hestermeyer, G. Pipa
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

(72) Cognitive Computing In Disease Management
G. Pipa
Pan European Network PEN 21 

(71) Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events
M. Shahi, C. van Vreeswijk, G. Pipa
Frontiers in computational neuroscience 

(70) 'Traumschreiber': measuring and manipulating human sleep with a portable high-quality but low-cost polysomnographic system
K. Appel, J. Leugering, G. Pipa
Journal of sleep research 

(69) Automated analysis of actimetry used for the detection of disease phenotypes in sleep medicine
R. Leenings, C. Glatz, M. Boentert, A. Heidbreder, G. Pipa, P. Young
Journal of sleep research 

 

2015

(68) A statistical framework to infer delay and direction of information flow from measurements of complex systems
J. Schumacher, T. Wunderle, P. Fries, F. Jäkel, G. Pipa
Neural computation

(67) Homeostatic plasticity for single node delay-coupled reservoir computing
H. Toutounji, J. Schumacher, G. Pipa
Neural computation

(66) Untangling cross-frequency coupling in neuroscience
J. Aru, J. Aru, V. Priesemann, M. Wibral, L. Lana, G. Pipa, W. Singer, R .Vicente
Current opinion in neurobiology 

(65) Assessing coupling dynamics from an ensemble of time series
G. Gómez-Herrero, W. Wu, K. Rutanen, M.C Soriano, G. Pipa, R. Vicente
Entropy 

(64) RM-SORN: a reward-modulated self-organizing recurrent neural network
W. Aswolinskiy, G. Pipa
Frontiers in computational neuroscience 

(63) An introduction to delay-coupled reservoir computing
J. Schumacher, H. Toutounji, G. Pipa
Artificial Neural Networks

 

2014

(62) Spatiotemporal computations of an excitable and plastic brain: neuronal plasticity leads to noise-robust and noise-constructive computations
H. Toutounji, G. Pipa
PLoS computational biology 

(61) Application of Parallel Factor Analysis (PARAFAC) to electrophysiological data
S.K. Schmitz, P.P. Hasselbach, B. Ebisch, A. Klein, G. Pipa, R.A.W Galuske
Frontiers in neuroinformatics 

(60) Forced-choice decision-making in modified trolley dilemma situations: a virtual reality and eye tracking study
A. Skulmowski, A. Bunge, K. Kaspar, G. Pipa
Frontiers in behavioral neuroscience 

(59) Neuronal oscillations form parietal/frontal networks during contour integration
M. Castellano, M. Plöchl, R. Vicente, G. Pipa
Frontiers in integrative neuroscience 

(58) Kinesthetic and vestibular information modulate alpha activity during spatial navigation: a mobile EEG study
B.V. Ehinger, P. Fischer, A.L. Gert, L .Kaufhold, F. Weber, G. Pipa, P. König
Frontiers in human neuroscience

2013

(57) Missing mass approximations for the partition function of stimulus driven Ising models
R. Haslinger, D. Ba, R. Galuske, Z. Williams, G. Pipa
Frontiers in computational neuroscience 

(56) An analytical approach to single node delay-coupled reservoir computing
J. Schumacher, H. Toutounji, G. Pipa
International Conference on Artificial Neural Networks

(55) Impact of spike train autostructure on probability distribution of joint spike events
G. Pipa, S. Grün, C. Van Vreeswijk
Neural Computation 

(54) Encoding through patterns: Regression tree–based neuronal population models
R. Haslinger, G. Pipa, L.D. Lewis, D. Nikolić, Z. Williams, E. Brown
Neural computation

(53) Memory Trace in Spiking Neural Networks
M. Castellano, G. Pipa
International Conference on Artificial Neural Networks

 

2012

(52) Context matters: the illusive simplicity of macaque V1 receptive fields
R. Haslinger, G. Pipa, B. Lima, W. Singer, E.N. Brown, S. Neuenschwander
PloS one 

(51) Statistical modeling approach for detecting generalized synchronization
J. Schumacher, R. Haslinger, G. Pipa
Physical Review

(50) Mapping of Visual Receptive Fields by Tomographic Reconstruction
G. Pipa, Z. Chen, S. Neuenschwander, B. Lima, E.N. Brown
Neural computation

(49) Optimized Temporal Multiplexing for Reservoir Computing with a Single Delay-Coupled Node
H. Toutounji, J. Schumacher, G. Pipa
The 2012 International Symposium on Nonlinear Theory and its Applications

 

2011

(48) Emerging bayesian priors in a self-organizing recurrent network
A. Lazar, G .Pipa, J. Triesch
International Conference on Artificial Neural Networks

(47) Applying the multivariate time-rescaling theorem to neural population models
F. Gerhard, R. Haslinger, G. Pipa
Neural computation 

(46) Effect of the topology and delayed interactions in neuronal networks synchronization
T. Pérez, G.C. Garcia, V.M. Eguíluz, R. Vicente, G. Pipa, C. Mirasso
PloS one 

(45) Low hemoglobin levels during normovolemia are associated with electrocardiographic changes in pigs
B. Scheller, G. Pipa, H. Kertscho, P. Lauscher, J. Ehrlich, O. Habler, K. Zacharowski, J. Meier
Shock 

(44) A new look at gamma? High-(> 60 Hz) γ-band activity in cortical networks: function, mechanisms and impairment
P.J. Uhlhaas, G. Pipa, S. Neuenschwander, M. Wibral, W. Singer
Progress in biophysics and molecular biology 

(43) Transfer entropy—a model-free measure of effective connectivity for the neurosciences
R. Vicente, M. Wibral, M. Lindner, G. Pipa
Journal of computational neuroscience 

(42) Analyzing possible pitfalls of cross-frequency analysis
R. Vicente, J. Aru, M. Wibral, V. Priessemann, G. Pipa, W. Singer, J. Aru
Frontiers in Human Neuroscience
(41) Spike train auto-structure impacts post-synaptic firing and timing-based plasticity
B. Scheller, M. Castellano, R. Vicente, G. Pipa
Frontiers in computational neuroscience 

(40) Bivariate and multivariate NeuroXidence: a robust and reliable method to detect modulations of spike–spike synchronization across experimental conditions
W. Wu, D.W. Wheeler, G. Pipa
Frontiers in neuroinformatics 

(39) Extraction of network topology from multi-electrode recordings: is there a small-world effect?
F. Gerhard, G. Pipa, B. Lima, S. Neuenschwander, W. Gerstner
Frontiers in Computational Neuroscience 

(38) Higher order spike synchrony in prefrontal cortex during visual memory
G. Pipa, M.H.J. Munk
Frontiers in computational neuroscience 

 

2010

(36) Discrete time rescaling theorem: determining goodness of fit for discrete time statistical models of neural spiking
R. Haslinger, G. Pipa, E. Brown
Neural computation 

(35) Goodness-of-fit tests for neural population models: the multivariate time-rescaling theorem
F. Gerhard, R. Haslinger, G. Pipa
BMC Neuroscience 

(34) Spontaneous activity in a self-organizing recurrent network reflects prior learning
A. Lazar, G. Pipa, J. Triesch
Front. Neurosci. Conference Abstract: Computational and Systems Neuroscience

(33) Estimating small-world topology of neural networks from multi-electrode recordings
F. Gerhard, G. Pipa, W. Gerstner
Frontiers in Computational Neuroscience

(32) Probability Estimation of Rare Events in Linguistics and Computational Neuroscience .
S. Evert, G. Pipa
10th Biannual Meeting of the German Society for Cognitive Science

 

2009

(31) A color-based visualization technique for multielectrode spike trains
O.F. Jurjuţ, D. Nikolić, G. Pipa, W. Singer, D. Metzler, R.C. Mureşan
Journal of neurophysiology 

(30) EEG under anesthesia—Feature extraction with TESPAR
V.V. Moca, B. Scheller, R.C. Mureşan, M. Daunderer, G. Pipa
Computer methods and programs in biomedicine 

(29) General anesthesia increases temporal precision and decreases power of the brainstem auditory-evoked response-related segments of the electroencephalogram
B.C.A. Scheller, M. Daunderer, G. Pipa
The Journal of the American Society of Anesthesiologists 

(28) Imaging the Effective Connectivity behind Frontal Control Processes in a Simon Task using Transfer Entropy
M. Wibral, R. Vicente, G. Pipa
15th Annual meeting, Organization for Human Brain Mapping, San Francisco 2009

(27) Neural synchrony in cortical networks: history, concept and current status
P.J. Uhlhaas, G. Pipa, B. Lima, L. Melloni, S. Neuenschwander, D. Nikolić, W. Singer
Frontiers in integrative neuroscience 

(26) Far in space and yet in synchrony: neuronal mechanisms for zero-lag long-range synchronization
R. Vicente, L.L. Gollo, C.R. Mirasso, I. Fischer, G. Pipa
Coherent Behaviour in Neuronal Networks

(25) Performance-and stimulus-dependent oscillations in monkey prefrontal cortex during short-term memory
G. Pipa, E.S. Städtler, E.F. Rodriguez, J.A. Waltz, L.F. Muckli, W. Singer, R. Goebel , M.H. Munk 
Frontiers in integrative neuroscience 

(24) SORN: a self-organizing recurrent neural network
A. Lazar, G. Pipa, J. Triesch
Frontiers in Computational Neuroscience

(23) Efficient Identification of State in Reinforcement Learning
S. Timmer and M. Riedmiller
Künstliche Intelligenz

2008

(22) Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays
R Vicente, LL Gollo, CR Mirasso, I Fischer, G Pipa
Proceedings of the National Academy of Sciences

(21) NeuroXidence: reliable and efficient analysis of an excess or deficiency of joint-spike events
G. Pipa, D.W. Wheeler, W. Singer, D. Nikolić
Journal of computational neuroscience 
download source code and example data

(20) Behavioral performance modulates spike field coherence in monkey prefrontal cortex
W. Wu, D.W. Wheeler, E.S. Staedtler, M.H.J. Munk, G. Pipa
Neuroreport 

(19) Auto-structure of presynaptic activity defines postsynaptic firing statistics and can modulate STDP-based structure formation and learning
G. Pipa, R. Vicente, A Tikhonov
Artificial Neural Networks-ICANN 

(18) Predictive coding in cortical microcircuits
A. Lazar, G. Pipa, J. Triesch
Artificial Neural Networks-ICANN 

(17) Contour integration and synchronization in neuronal networks of the visual cortex
E. Ullner, R. Vicente, G. Pipa, J. García-Ojalvo
Artificial Neural Networks-ICANN

 

2007

(16) Zero-Lag Long Range Synchronization of Neurons Is Enhanced by Dynamical Relaying
R. Vicente, G. Pipa, I. Fischer, C. Mirasso
Artificial Neuronal Networks ICANN

(15) Achieving synchronization of networks by an auxiliary hub
D. Huang, G. Pipa
A letters journal exploring the frontiers of physics 

(13) Fading Memory and Time Series Prediction in Recurrent Networks with Different Forms of Plasticity
A. Lazar, G. Pipa, J. Triesch (first and second author contributed equally)
Neural Networks

(12) Fitted Q Iteration with CMACs,
S. Timmer, M. Riedmiller
Proceedings of the International Symposium on Approximate Dynamic Programming and Reinforcement Learning (ADPRL)

(11) Safe Q-Learning on Complete History Spaces,
S. Timmer, M. Riedmiller
Proceedings of the 18th European Conference on Machine Learning (ECML)

(10) Importance of electrophysiological signal features assessed by classification trees
A. Lazar, R.C. Muresan, E. Stadler, M. Munk, G. Pipa 
Neurocomputing 

 

2006

(9) Neuronal Code: Development of tools and hypotheses for understanding the role of synchronisation of neuronal activity
Ph.D. thesis G. Pipa   

(8) The combination of STDP and intrinsic plasticity yields complex dynamics in recurrent spiking networks
A. Lazar, G. Pipa, J. Triesch 

Proceedings of the European Symposium on Artificial Neural Networks 

(7) Abstract State Spaces with History
S.Timmer, M.Riedmiller
Proceedings of the 25th International Conference of NAFIPS, the North American Fuzzy Information Processing Society

2005

(6) Single-Unit Recordings Revisited: Activity in Recurrent Microcircuits
R. C. Muresan, G. Pipa, D. W. Wheeler
Lecture Notes in Computer Science

(5) Coherence, Memory and Conditioning. A Modern Viewpoint
 R. C. Muresan, G. Pipa, R. V. Florian, D. W. Wheeler
Neural Information Processing 

(4) Learning policies for abstract states
S. Timmer, M. Riedmiller
Proceedings of the International Conference on Systems, Man and Cybernetics

2003

(3) Non-Parametric significance estimation of joint-spike events by shuffling and resampling
G. Pipa, S. Grün
Neural Computing, Neurocomputing

(2) Significance of Joint-Spike Events Based on Trial-Shuffling by Efficient, Combinatorial Methods
G. Pipa, M. Diesmann, S. Grün
Complexity 

(1) Entwicklung und Untersuchung einer nicht-parametrischen Methode zur Schätzung der Signifikanz zeitlich koordinierter Spike-Aktivität
Diploma thesis G.Pipa